
Journal of Quality and Technology Management
Volume VIII, Issue II, December 2012, Page 135–151

A QUALITATIVE FRAMEWORK FOR INTRODUCING

PROGRAMMING LANGUAGE AT HIGH SCHOOL

M.S. Farooq1, A. Abid1,3, S.A. Khan1, M.A. Naeem4, A. Farooq1, K. Abid2 &

M. Shafiq5
1University of Central Punjab, Lahore, Pakistan

2University of the Punjab, Lahore, Pakistan
3Department of Electronics and Information, Politecnico di Milano, Milan,

Italy
4Department of Electronics and Electrical Engineering, University of

Glasgow, UK
5Institute of Quality & Technology Management, University of the

Punjab, Lahore, Pakistan

ABSTRACT

Programming is rapidly becoming an integral part of the basic knowledge that
should be possessed by the students of all disciplines, in general, and of
engineering and sciences, in particular. This is evident from the fact that the
programming courses were included as a part of bachelor’s degree curriculum
and soon after, an introductory course of programming has been introduced at
high school level (grade X and XI). In this paper, we highlight the point that in
the near future programming should be considered among the fundamental
courses in the curriculum of schools from grade VI. This course should be aligned
with the basic principles of mathematics, which have already been learned by the
students.

As our main contribution, we present a qualitative framework for designing such
programming language at school level. We also discuss the possibility as to how
an existing programming language should be customized for the better learning
of the high school students. In this regard, we have outlined the major
requirements including language’s theoretical design and implementation, tools
related to the language, curriculum design and assessment.

Keywords: Language design framework, programming at high school,
programming language.

A Qualitative Framework for Introducing Programming Language High School

136|

1) INTRODUCTION

Computer programming is increasingly becoming a need for the people
belonging to all fields of life. The reason is that ever since the IT
revolution almost everything has been digitized and the use of software is
a usual activity for the people from all domains, as there are software
systems available for a simple small shop to a big high-tech hospital, and
similarly from a simple telephone exchange to space navigation systems.
Furthermore, most of the modern general purpose software, which are
used by a wide variety of users e.g. MS Office involves some basic level
programming to enrich documents with different features. Similarly,
researchers from different domains medical sciences, neurologists,
geologists etc. not only use computer software systems, but they also
have to write their own customized software systems through which they
manage their own research experiments. Basic understanding and
knowledge of computer programming is a desirable for the researchers
from all domains. Above all, it is increasingly becoming evident that a
basic understanding of computer programming is a need for the people
belonging to various different domains of life. Therefore, we argue that
the programming language course should be introduced at high school
level (Peter Brusilovsky, 1998).

In order to learn computer programming in a better way one should start
learning it at high school level (Elkner, 2001). There are some computer
languages which are being taught at high school level in Europe and the
US (Linda Grandell, 2006) (programming at high school, 2010), whereas
some other languages are taught at other levels of education as shown in
Table 1.

Table 1: Widely used Programming Languages at Different Levels of Education

Educational Level Appropriate Languages
Pre-School to Grade 2 Logo, Karel, Scratch
Grades 2 to 4 Logo, Scratch, Karel 3D
Grades 5 to 8 Mama, Greenfoot, Learning Oriented BASIC
High School Squek, Microsoft Small BASIC, Tortoise
College Freshmen, University Turingal, Karel Genie, Wayfarer

Once we explore the programming language being taught at high school
level, we can figure out that some of them are fun based languages with

Journal of Quality and Technology Management

|137

the main purpose to involve the kids to interact with computer (Xiaoxia
Wang, 2011) (Li-Chun Wang, 2010). Whereas, on the other end, some of
the programming languages use complex programming syntax which is
generally hard to learn and grasp for a student of high school (David
Smith, 2010). Programming language involves different kind of
understanding and learning as compared to the natural languages. In
terms of teaching the first course in computer programming, initially, a
student is introduced to the notions of pseudocode and algorithm, which
mainly define the workflow or the steps involved in order to solve a
problem in easily understandable manner. Then the students are taught
how to implement a pseudocode in a particular language. From thereon
more features are taught to the students to understand the language in
more details (SeungWook Yoo, 2006).

In this paper, we have presented a qualitative framework which holds the
key features that a programming language should possess to be used at
high school level. Our framework suggests that a language should be
simple and clean; should have quick feedback mechanism; should be a
scripting language instead of an imperative language; should be a subset
of an existing high level programming language; should be aligned with
the syllabus of each grade.

The rest of the paper is presented in the following order. The next section
discusses the related work and main concerns related to the design of the
language; Section 3 presents our main framework for the designing and
assessment of ideal programming language for high school students. In
Section 4, we discuss the proposed framework. Whereas, Section 5
concludes the paper and provides the future directions that emerge from
this work.

2) RELATED WORK AND LANGUAGE DESIGNING ISSUES

Popularity and adoptability of programming language for beginners
depends upon the features provided by the language. So we consider that
as a main feature in designing an ideal programming language for novice
programmers should be easy to understand and it should especially focus
on minimizing the common mistake made by the novice programmers.
This can be achieved if the proposed language has a simple syntax, simple
words and involves simple implementation standards. There should be
minimal or no learning over head for learning programming language. It

A Qualitative Framework for Introducing Programming Language High School

138|

should be seriously considered that a novice programmer does not have
any programming or computer science background (Chen, 2004).
Therefore, while designing the programming language, the designers
should keep in mind that the pre-requisites for learning the language
should be minimized (Schollmeyer, 1996).

Many efforts have been made to develop Mini languages for high school
level. Here Mini langue term is used for languages that use some actor
(turtle or robot) which performs different operations at micro-world using
some predefined commands. The main purpose of such approaches is to
help the novice programmers learn programming with ease. (Mendelson
P.G., 1990). Logo (the turtle) (Papert, 1980) was the first Mini Language.
Originally, Logo was not designed for educational purpose but it
provides a good start for other Mini languages. Karel the Robot,
introduced by (Pattis, 1981) was originally designed for educational
purpose. The basic objective of Karel was to learn Pascal which was very
popular language at that time.

There are several mini-languages which were directly stirred by Karel
and use some of its features: Martino (Olimpo, 1988) and Marta
(Calabrese, 1989) in Italy, Darel (Kay, 1993) in Australia and Karel-3D
(Hvorecky, 1992) in Slovakia. However, all these languages have a
common drawback that they do not have the concepts of variables and
parameter passing. Thus, they fail to impart actual programming
concepts to the students (Clancy, 2004).

The Karel Genie has been in used in secondary schools and universities
throughout the US for nearly ten years. It has been used in teaching
computer programming at several renowned universities including
Carnegie Mellon University, Harvard University, Stanford University,
New York University, Ohio State, Swarthmore College and some other
institutions. Figure 1 shows the variants of Karel language which are used
at different educational levels.

In order to design a programming language for the high school students
it should be strictly aligned with the course contents of other subjects
being taught, especially with mathematics. Therefore, as soon as they
learn mathematical constructs they should be able to learn their
corresponding constructs in the programming language. Furthermore, in
terms of teaching, the concepts should be introduced step by step, e.g.

Journal of Quality and Technology Management

|139

definition, variables introduction to conditional control statements and
loops should be introduced step by step, and based on the fact that the
students have learned necessary ingredients from other courses to
understand such concepts.

Naturally, a language designed for the students of high school will
possess simpler features and more advanced features will be introduced
at later stages. This will help in many ways: firstly, the students will have
sufficiently long time to grasp a concept and its corresponding
implementation in a programming language; secondly, with the passage
of time the student becomes more familiar with the programming
language as well as programming techniques; thirdly, this provides a
smooth run from a novice programmer to a professional programmer.
Generally, it has been observed that the students who have not learned
computer programming at early stages of their education face more
problems at higher levels as well (Mitchel Resnick, 2009).

Apart from the above mentioned objectives, we also intend to design the
language in such a way that it should improve the thinking power, logical
reasoning and problem solving skills of the students. This is somewhat
related to the design of the language and it is more closely related to the
teaching methodology and alignment of the syllabus of programming
course with other relevant courses.

A Qualitative Framework for Introducing Programming Language High School

140|

Figure 1: Variants of Karel

Some work has already been done in this regard, e.g. (Linda Grandell,
2006) and (Kevin R. Parker, 2006) discuss the process of choosing the first
programming language to be taught to the students. Similarly, the
customizations of the contents of the language for the first programming
language are also discussed. In (Milbrandt, 1993) the authors emphasize
on teaching with the help of problem solving skills. Some (Shaffer, 1986)
(Milbrandt, 1993) have highlighted the importance of using visually
interactive programming languages for the novice programmers.

3) PROPOSED QUALITATIVE FRAMEWORK

1) Simple syntax.
2) No pre-requisites.
3) Easy to implement.
4) Scripting programming language.
5) Easy transition to higher level languages.
6) Closely aligned to the curriculum.

Journal of Quality and Technology Management

|141

3.1) Simple Syntax

One of the hard challenges for a new programmer is to become familiar
with the syntax of the language in which she is programming. A simpler
and clear syntax will surely help a novice programmer to grasp the
language quickly. Especially, in our case, where we are concerned with
very young students, simplicity and clarity is an inherent requirement so
that the language should be easily understandable. We define complexity
of the syntax in terms of inclusion of the header files, declaration of
variable with data types, punctuation marks needed to write the code,
and total number of lines of code.

Most of the programming languages taught at the high school level as a
first programming language pose the problem of learning difficult syntax.
Some need to include important file and lots of parenthesis and other
punctuation marks which are hard to learn in the beginning, especially
for younger students. The most common examples of the syntactic
mistakes committed by the novice programmers are missing parenthesis,
missing a semicolon and similar syntax errors.

The complexity in the syntax may frustrate the students and a novice
programmer may lose her interest in programming. Similarly, a simpler
syntax will surely help developing the interest in computer
programming. Therefore, as a prime quality metric for our proposed
framework we suggest that the language should have simpler and cleaner
syntax.

Below, we present a comparison of our proposed simple language with
Microsoft Visual Basic (Table 2).

A Qualitative Framework for Introducing Programming Language High School

142|

Table 2 (Code Comparison)

Proposed language Visual BASIC
1) a =10
2) b= 15
3) c = a+b
4) print c

Run

1) Private sub button_click()
2) Dim a as integer
3) Dim b as integer
4) Dim c as integer
5) a = 10
6) b = 15
7) c = a+b
8) msgbox (c)
9) End sub

In Table 2, we have presented the code for a program that involves simple
addition of two integer variables and displays the result. In the upper
section we have presented the code for the same program in Microsoft
Visual Basic language, which is claimed to be the best language for the
beginner programmers (Kevin R. Parker, 2006). We can see that using
Visual Basic this simple program is written on 9 lines; on the other hand,
we have presented a sample code within four lines for the same purpose
in our proposed language. This takes fewer lines and has much simpler
syntax. Therefore, the example in Table 2 shows that by simplifying the
syntax of the language we can save novice programmers from a lot of
common mistakes.

Here, we can see that our proposed language has much simpler syntax
which can be easily understood by a young student. So, in the beginning
the students will write simple and easy codes. Whereas, as they progress,
more programming constructs will be taught to them and they will be
able to use those constructs to write more sophisticated code. We shall
cover this point with more details in the coming sections. We claim that
by bringing this simplicity in terms of writing the code we shall be able to
increase the interest of the young students towards computer
programming.

This simplicity in the syntax of the language requires a serious amount of
work done. It demands significant changes in the compiler for its parser,
linker and code generator. This is evident from Table 3, where we have
presented the few constructs that become optional. Therefore, these
changes require features like implicit assumptions about the data types,

Journal of Quality and Technology Management

|143

acceptance of implicit declaration of a variable, and some other
simplifications in the coding standards.

Table 3 (Comparison Result)
Constructs Action
Semicolon (;) Optional
Dim Optional
As Optional
Data type(integer) Optional
Private sub Optional
End sub Optional
Msgbox Replace with “print” statement.

3.2) No Pre-requisites

A serious consideration while designing a programming language for
high school students is that these students do not have any prior
knowledge of computer programming. Therefore, a very important
quality of our proposed framework is the assumption that the language
should not have any pre-requisites. This will help in designing a language
which will be easier to understand, especially for new students.

However, a few simple requirements to learn programming in this new
language will be the understanding of basic arithmetic and some
understanding of English language. Learning mathematics and English
language are already a part of the curriculum, so we can say that learning
to program in a language that conforms to our proposed framework does
not require any explicit pre-requisites.

3.3) Easy to Implement

One of the major concerns in terms of introducing a programming
language at the high school level is difficulty in learning and
implementing a programming language. This has already been a concern
at university level as well (Mitchel Resnick, 2009). Therefore, naturally,
the concern is if the high school students will have the capabilities to learn
such languages. A few main problems faced by novice programmers in
terms of implementation are use of wrong language constructs, passing
the parameters etc. (Linda Grandell, 2006).

A Qualitative Framework for Introducing Programming Language High School

144|

Hence, we propose that the language should be simple and many
constructs should be made optional to simplify the implementation by a
novice young programmer.

In order to make a language simpler, we suggest the following
amendments:
- The constructs like semicolon, parentheses block indentation of code

and header file etc. can be made optional.
- More than one statement in proposed programming language will be

considered as a block. In order to start a new block we can use
“tab” as does the Python programming language. In the same
“tab” all statements are considered in same block. So the
programmer only has to use “tab” for selected line of statement in
order to make it indented. This will also make the code more
readable. This formatting of the code is one of the highly desired
features in the software industry as well as it makes the
maintenance of the code easier and also helps in extending the
code more easily.

- Hide all the constructs that make a hurdle in terms of understanding
due to lack of relevant knowledge. This involves alignment of the
programming language course with the syllabus of other relevant
subjects.

This requires the design of a sophisticated Integrated Development
Environment (IDE) tool. Such tools are widely used at professional level
as well, and help the programmers implement the code easily. Similarly,
at such novice level such a tool will ease job of a programmer. We
strongly believe that an IDE tool with rich features list is one of the major
requirements to make the implementation easier.

3.4) Scripting programming language

We argue that the proposed language should be a scripting language and
it should not be an imperative programming language. The reason is that
scripting programming languages are not ideal for system programming,
and we cannot use them as operating system programming language.
Also the scripting languages are especially designed for a quicker
feedback to the user, e.g. they are widely used in Web based applications
and many desktop applications. More importantly, it has been established

Journal of Quality and Technology Management

|145

in (Mendelson, 1990) that the novice programmers ask for a quick and fast
feedback.

Scripting programming languages like python, php, and VB are different
than other programming language. These kind of programming assumed
that building block of development already have been developed and in
scripting language just need to use no need to develop it from scratch.
Scripting language normally used for enhancement of features of complex
algorithm and data structures. Such features like usually provided by
component. Scripting language some time called system integration
language.

Secondly, it is important as a first programming language for novice
programmers because in order to work in scripting language normally
demanding less effort to write less code and get more output. Mostly
plugins are available and can be customized according to need of the
programmer. There are several valuable benefits of choosing a scripting
language for the novice programmers. Firstly, they are easier to learn and
write code. Secondly, the existing off the shelf components are available
in the form of plug-ins and they can be seamlessly integrated in such
languages. “As far as I can tell, the way they taught me to program in
college was all wrong. You should figure out programs as you're writing
them, just as writers and painters and architects do” (O’Reilly, 2003). This
again highlights the need of an environment which makes computer
programming easier that can be achieved by a simple and easier IDE.

3.5) Easy Transition to Widely used Higher Level Languages

The most common agreement in all research centers related to computer
programming is that the first year programming language for a novice
programmer must be a high level language. The idea is that the first ideal
programming language for high school should be a subset of a high level
programming language. This can be any high level programming
language which is widely used in educational institute for the initial
programming courses. It can be C/C++ as MINI C or JAVA as MINI
JAVA or any language that is meets above criteria. Another advantage of
choosing such a language which is widely used in academia is that there
is a lot of supportive material such as tutorials, resources, books and
trainers of that language.

A Qualitative Framework for Introducing Programming Language High School

146|

Besides the contents and resources of programming language, the high
level programming languages are close to human understanding as
compared to a low level language. Especially, for the beginners it is
necessary that they should learn high level programming language as
their first year programming course (SeungWook Yoo, 2006).

Moreover, the main purpose of introducing programming language at
high school is to learn the language constructs and programming logic
along with the other relevant courses. This will help in improving the
understanding of the programming language, and will also improve the
thinking level of the students. Writing a piece of code demands a clear
understanding of the problem, therefore, writing the program for a
certain problem will inevitably improve the understanding of the
problem and its domain. It will also help the students their logic building
and reasoning skills used behind any action of computer during their
interaction with it. So, it is important to highlight a point for the student
that learning the programming skills will be a very useful tool in their
personal skills from which they can benefit at any stage of their lives. This
will make the whole exercise of learning computer programming very
easier and effective as it involves a natural phenomenon of introducing a
new thing to the human which draws their attention in many ways.

3.6) Closely Aligned to the Curriculum

A very important consideration while designing a programming
language for high schools students is to introduce the concepts in a
smooth and gradual manner. This involves a serious task of examining
the other relevant courses and identify the contents of those courses
which are required to learn how to program. The most important course
in this regard is that of Mathematics. Therefore, the course of
programming language should be synchronized with the course of
mathematics, and no constructs from the programming language should
be introduced to the students prior to the corresponding concept in
mathematics. This will also help the students in solving the problems/
exercises of other course work using computer programming. The student
will benefit from this activity and will be able to understand the use of
software and computer programming in various different fields. This will
not only increase the student’s interest in computer programming, but
will also be beneficial in better understanding of the concepts of other
subjects.

Journal of Quality and Technology Management

|147

As an example, let us consider a simple mathematical problem which
computes the average of two given numbers. Table 4 shows the solution
in mathematics and its corresponding implementation in our proposed
simplified high school programming language. We can see that our
proposed programming language is very close the mathematical
expressions, thus, it involves lesser effort in terms of learning the syntax
of the code. It is important to note that this simplified syntax is different
from the syntax of existing languages, as shown in Tables 2 and 4.
However, this needs to make several changes in the design and
implementation of this programming language. Intuitively, it is clear that
the compiler of an existing high level language needs to be modified to
incorporate the simplified syntax, as discussed in this paper.

Table 4: (Code Comparison)

Solution in Mathematics Solution in Computer Program
Number1=10
Number2= 20
Average = (Number1+ Number2)/2

Answer = Average, which is 15

Number1=10
Number2= 20
Average = (Number1+ Number2)/2

Print average.

In our proposed language a high school student can develop a sense of
writing algorithms, create logic, do some reasoning for the problem at
hand, which will be beneficial for her later in her life in many fields in
several ways. Whereas, strict adherence and synchronization to the
syllabus of other relevant courses helps in terms of teaching and
introducing the programming constructs over a timeline.

Another important factor in designing the curriculum is to provide useful
text books for every school grade. Each books should contain description
of the topics, examples related to that topic, problem exercises for these
topics. Therefore, designing thorough practical and effective text books is
also holds an important position in this project.

A Qualitative Framework for Introducing Programming Language High School

148|

4) DISCUSSION

4.1) Technical Requirements

The idea presented in this paper is simple yet important; however, it
requires a big amount of work to be done in terms of tools and
technologies. Technically, our proposed project affects the syntax and
semantics of the existing programming language. Our requirement is that
the compiler should understand both existing programming language, as
well as, our proposed simpler programming language syntax. This needs
major changes in terms of theoretical design of the language, and all parts
of the compiler, namely, the lexical analyzer, syntax analyzer, and the
code generator, which is very time consuming process. Alternatively we
can design a preprocessor while will implement lexical, syntax and
semantic analyzer and produce intermediate code in some high level
programming language which should be compatible with existing
compilers.

The other important aspect is the development of a supporting Integrated
Development Environment (IDE) for this purpose. This IDE should be
equipped with strong features to help the young learner in coding and
debugging. For instance, the IDE should have support to include the
required library files, based on the code. Another attractive feature,
especially, for the young beginner students, can be the writing of code
with the help of some UI features, e.g. buttons. The student can write
code for declaring variable, display message box, and many other most
frequently used operations. The IDE should generate the code based on
user’s commands. This way, in the beginning, the young programmers
can write the code with the help of the User Interface (UI). However, later
on, as the student progresses, the IDE should raise the level of difficulty,
and the programmer should write the code herself. This way the IDE can
be used for examination purpose as well.

Apart from the tools and technologies, writing and preparing appropriate
syllabus books for each distinct grade for high school also demands
serious deliberation. Proper text books with all necessary ingredients
including theory, examples, and exercises are core requirements for the
success of this project. A proper road map is required for this purpose,
which defines all the topics to be covered in each year. This in turn,

Journal of Quality and Technology Management

|149

requires another level of synchronization of the teaching material with
other relevant courses, mainly, mathematics for concepts, and in general
with other related courses for example scenarios and exercises. Finally,
thorough reviews for the curriculum are required by the educationists to
approve the quality of the designed curriculum and books.

4.2) Expected Outcome of the Project

In general, such programming language courses are taught with the
following objectives:

1) The student should develop critical and logical thinking.
2) The students should possess problem solving skills and should be

able to understand the problem, and they should be able to design,
implement and debug it.

3) The reluctance of the students towards writing code should be
eliminated. After taking such courses the students should be able
to write the code without any hesitation. This is affected by not
only the language and available tools, but is also affected by the
teaching methodology. This will make the student comfortable
with computer programming in future (Linda Grandell, 2006).

Therefore, a major contribution of our research is the intention to produce
students who possess the above mentioned objectives. Secondly, we want
to develop supportive tools and technologies including the preprocessor;
a rich IDE, mainly focusing at the ease in coding; and appropriate text
books to help the instructors and students make this a success.

5) CONCLUSION AND FUTURE DIRECTIONS

In this paper we have proposed a qualitative framework for designing a
programming language course for the high school students. The proposed
framework is a comprehensive effort which encompasses all major
aspects of the problem, in terms of tools and technologies; and in terms of
educational requirements. Above all, this work lays a solid foundation for
the development of high school level programming course.

This work opens several future directions based on a number of major
tasks identified during this phase; namely, design of the language and
implementation of its compiler. Another important activity is the design

A Qualitative Framework for Introducing Programming Language High School

150|

and development of curriculum. Lastly, design and implementation of a
rich Integrated Development Environment is necessary for the
accomplishment of the whole project.

REFERENCES

Calabrese, E. (1989). Marta - the “Intelligent Turtle”. Proceedings of Second

European Logo Conference, EUROLOGO’89 , (pp. 111-127).
Chen, X. N. (2004). First Programming Languages Revisited. College

Teaching and Learning Conference, (pp. 27-32). Orlando, Florida.
Clancy, M. (2004). Misconceptions and attitudes that interfere with

learning to program. Computer Science Education Research. (pp. 85-
100). London, UK: Taylor and Francis Group.

David Smith, P. L. (2010). Using educational programming language to
enhance teaching in computer science. Edge Conference.

Elkner, J. (2001). Using Python in a high school computer science
program. Ninth International Python Conference.

Hvorecky, J. (1992). Karel the Robot for PC. Proceedings of East-West
Conference on Emerging Computer Technologies in Education , (pp.
157-160). Moscow.

Kay, J.A. (1993). A microworld for developing learning design strategies.
Computer Science Education 3 (1) , 111-122.

Kevin R. Parker, J.T. (2006). A Formal Language Selection Process for
Introductory Programming Courses. Journal of Information
Technology Education.

Li-Chun Wang, M.-P. C. (2010). Learning Programming Concepts through
Game Design: A PCT Perspective. DIGITEL - Digital Game and
Intelligent Toy Enhanced Learning.

Linda Grandell, M. P.-J. (2006). Why complicate things? Introducing
programming language in high school using Python. Australasian
Computing Education Conference - ACE .

Mendelson, P. G. (1990). Programming languages in education: the search
for an easy start. Psychology of programming, 175-200.

Mendelson, P.G. (1990). Programming languages in education: the search for
an easy start. In Psychology of programming. London: Academic
Press.

Milbrandt, G. (1993). Using problem solving to teach a programming
language in computer studies. Journal of Computer Science Education
8(2), 14-19.

Mitchel Resnick, J.M. (2009). Scratch: Programming for Everyone. ACM.

Journal of Quality and Technology Management

|151

Olimpo, G. (1988). The Robot Brothers: An environment for learning
parallel programming oriented to computer education. Computers
and Education, 113-118.

O’Reilly, T. (2003, May 14). Why Scripting Languages Matter. Retrieved
January 12, 2012, from
oreilly.com:http://oreilly.com/pub/wlg/3190

Papert, S. (1980). Mindstorms, children, computers and powerful ideas. New
York: Basic Books.

Pattis, R. E. (1981). Karel - the robot, a gentle introduction to the art of
programming. London: Wiley.

Peter Brusilovsky, E. C. (1998). Mini-languages: a way to learn
programming principles. Education and Information Technologies 2,
1, 65-83.

Programming at high school. (2010, 10 12). Retrieved January 2012, from
www.techrepublic.com:http://www.techrepublic.com/blog/prog
ramming-and-development/how-to-introduce-high-school-
students-to-programming/1511

Schollmeyer, M. (1996). Computer programming in high school vs.
college. SIGCSE ‘96: Proceedings of the 27th SIGCSE technical
symposium on CS education, (pp. 378-382).

SeungWook Yoo, K.-A. K. (2006). Empirical Study of Educational
Programming Language for K12. IJCSNS International Journal of
Computer Science and Network Security , Vol. 6 No. 6.

Shaffer, D. (1986). ‘The use of logo in an introductory computer science
course. SIGCSE Bull. 18(4), 28-31.

Xiaoxia Wang, Z. Z. (2011). The research of situational teaching mode of
programming in high school with Scratch . ITAIC - IEEE Joint
International Information Technology and Artificial Intelligence
Conference.

